April 2022

Net-Zero Transportation

Fuel and electrification strategies: Both are necessary to achieve mid-century decarbonization goals

Fuel will still be used in 2050

"Critical applications will be difficult or impossible to electrify by 2050."1

National Academies of Science

Transportation

Industry

Energy Storage and Firm Power

Support for these [fuel decarbonization] technologies today, through research and development, early-stage commercialization, and ultimately largescale deployment, is necessary to achieve net-zero emissions.

Environmental Defense Fund, Marginal Abatement Cost Curves for U.S. Net-Zero Energy Systems To decarbonize the transportation sector, it is crucial that the energy sources – electricity and liquid or gaseous fuels – powering vehicles be produced in a very low-carbon or carbon-neutral way.

ICCT, Vision 2050

Countries that incorporate renewable energy carriers such as biofuels, e-fuels, renewable electricity, and renewable hydrogen have the best chances to meet decarbonization goals.

IEA, Net-Zero by 2050

Net-zero energy systems will need to rely on alternative fuels – notably hydrogen or biofuels – in several sectors that are not amenable to electricity and otherwise hard to decarbonize.

ICCP, Working Group III, AR 6 (Mar. 2022)

Net zero fuels are essential

Energy Sources for Transportation

2 billion

new ICE vehicles expected on the road by 2050

ICCT, Vision 2050

Mid-Century Fuels Project, using data from UC Davis and the U.N.

In 2050, marine and aviation emissions could exceed US + China

Figure 4. Transportation CO₂ emissions by region, with global aviation and marine sectors, in 2020 and 2050.

Low carbon fuels are available – and more are coming

Approaches include...

- Water (electrolysis)
- Renewable Natural Gas
- Using renewable energy and CCUS

- Produced from wastes or biomass
- Used as net-zero fuel
- Used for H₂ production

- Renewable diesel & gasoline, sustainable aviation fuel (SAF), EtOH
- Replace petroleum gasoline, diesel, or jet fuel
- Decarbonize non-electrified LD, HD, and non-road vehicles

Bioenergy with carbon capture & sequestration (BECCS)

Removing atmospheric carbon while creating energy supplies

Evolution of Ethanol

"Conventional" corn ethanol has shown substantial reductions in carbon emissions – driven by a shift to renewable energy supply.

Adding carbon capture & storage will make corn ethanol a carbon negative fuel.

Average carbon intensity (CI) of fuel ethanol pathways (all pathways show savings over fossil fuel standard)

Investment signals are necessary

Fuel market size,¹ bgpy

¹Based on IEA 2040 "Sustainable Future" scenario prorated for 2050 net-zero, excludes solid biomass and food/ feed-based biofuels

Fuels decarbonization, including hydrogen and liquids fuels, will require the deployment of technologies that are not yet commercial or not currently deployed at a significant scale.

Environmental Defence Fund, Marginal Abatement Cost Curves for U.S. Net-Zero Energy Systems

Maximize use of EPA's existing authorities to accelerate GHG emission reductions and increase technology neutrality

We support technologyneutral decarbonization approaches

- California's LCFS has driven investment and innovation
- Congress should authorize a carbon performance approach
- EPA has the resources and experience to provide crucial information to support legislative efforts in Congress

Thank you!

Chris Hessler Partner, AJW Inc. chessler@ajw-inc.com

